Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(g_{19}+8/9g_{2}+5/9g_{1}\) | \(g_{5}+3/4g_{4}\) | \(-g_{23}+5/8g_{22}\) | \(g_{13}\) | \(g_{20}\) | \(g_{25}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(6\omega_{1}\) | \(6\omega_{2}\) | \(5\omega_{1}+3\omega_{2}\) | \(10\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{6\omega_{2}} \) → (0, 6) | \(\displaystyle V_{5\omega_{1}+3\omega_{2}} \) → (5, 3) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | \(5\omega_{1}+3\omega_{2}\) \(3\omega_{1}+3\omega_{2}\) \(5\omega_{1}+\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(5\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-5\omega_{1}-\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}-3\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{2}\) \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{2}\) | \(5\omega_{1}+3\omega_{2}\) \(3\omega_{1}+3\omega_{2}\) \(5\omega_{1}+\omega_{2}\) \(\omega_{1}+3\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(-\omega_{1}+3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(5\omega_{1}-3\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+3\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-\omega_{1}-3\omega_{2}\) \(-5\omega_{1}-\omega_{2}\) \(-3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}-3\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) | \(\displaystyle M_{5\omega_{1}+3\omega_{2}}\oplus M_{3\omega_{1}+3\omega_{2}}\oplus M_{5\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}+3\omega_{2}} \oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}} \oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}+3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}} \oplus M_{-\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}-3\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{2}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{2}}\) | \(\displaystyle M_{5\omega_{1}+3\omega_{2}}\oplus M_{3\omega_{1}+3\omega_{2}}\oplus M_{5\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}+3\omega_{2}} \oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+3\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}} \oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-3\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}+3\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}} \oplus M_{-\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}-3\omega_{2}}\oplus M_{-5\omega_{1}-3\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) |